Capzb2 Interacts with β-Tubulin to Regulate Growth Cone Morphology and Neurite Outgrowth
نویسندگان
چکیده
Capping protein (CP) is a heterodimer that regulates actin assembly by binding to the barbed end of F-actin. In cultured nonneuronal cells, each CP subunit plays a critical role in the organization and dynamics of lamellipodia and filopodia. Mutations in either alpha or beta CP subunit result in retinal degeneration in Drosophila. However, the function of CP subunits in mammalian neurons remains unclear. Here, we investigate the role of the beta CP subunit expressed in the brain, Capzb2, in growth cone morphology and neurite outgrowth. We found that silencing Capzb2 in hippocampal neurons resulted in short neurites and misshapen growth cones in which microtubules overgrew into the periphery and completely overlapped with F-actin. In searching for the mechanisms underlying these cytoskeletal abnormalities, we identified beta-tubulin as a novel binding partner of Capzb2 and demonstrated that Capzb2 decreases the rate and the extent of tubulin polymerization in vitro. We mapped the region of Capzb2 that was required for the subunit to interact with beta-tubulin and inhibit microtubule polymerization. A mutant Capzb2 lacking this region was able to bind F-actin and form a CP heterodimer with alpha2-subunit. However, this mutant was unable to rescue the growth cone and neurite outgrowth phenotypes caused by Capzb2 knockdown. Together, these data suggest that Capzb2 plays an important role in growth cone formation and neurite outgrowth and that the underlying mechanism may involve direct interaction between Capzb2 and microtubules.
منابع مشابه
Capzb2 protein expression in the brains of patients diagnosed with alzheimer’s disease and huntington’s disease
The silencing of actin capping protein ß2, Capzb2, by RNAi in developing cultured neurons results in short, dystrophic neurites reminiscent of cytoskeletal changes seen in diverse neurodegenerative diseases, including Alzheimer’s disease (AD) and Huntington’s disease (HD). Actin and tubulin are two major cytoskeletal proteins indispensable for normal neurite development and regenerative respons...
متن کاملModulators of Cytoskeletal Reorganization in CA1 Hippocampal Neurons Show Increased Expression in Patients at Mid-Stage Alzheimer's Disease
During the progression of Alzheimer's disease (AD), hippocampal neurons undergo cytoskeletal reorganization, resulting in degenerative as well as regenerative changes. As neurofibrillary tangles form and dystrophic neurites appear, sprouting neuronal processes with growth cones emerge. Actin and tubulin are indispensable for normal neurite development and regenerative responses to injury and ne...
متن کاملCRMP-5 interacts with actin to regulate neurite outgrowth
CRMP family proteins (CRMPs) are abundantly expressed in the developing nervous system mediating growth cone guidance, neuronal polarity and axon elongation. CRMP‑5 has been indicated to serve a critical role in neurite outgrowth. However, the detailed mechanisms of how CRMP‑5 regulates neurite outgrowth remain unclear. In the current study, co-immunoprecipitation was used to identify the fact ...
متن کاملCompetitive Dynamics during Resource-Driven Neurite Outgrowth
Neurons form networks by growing out neurites that synaptically connect to other neurons. During this process, neurites develop complex branched trees. Interestingly, the outgrowth of neurite branches is often accompanied by the simultaneous withdrawal of other branches belonging to the same tree. This apparent competitive outgrowth between branches of the same neuron is relevant for the format...
متن کاملDynamic Microtubules Catalyze Formation of Navigator-TRIO Complexes to Regulate Neurite Extension
Neurite extension is regulated by multiple signaling cascades that ultimately converge on the actin and microtubule networks [1]. Rho GTPases, molecular switches that oscillate between an inactive, GDP-bound state and an active, GTP-bound state, play a pivotal role in controlling actin cytoskeleton dynamics in the growth cone, whereas the dynamic behavior and interactions of microtubules are la...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2009